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Introduction

Superbend, a superconducting dipole magnet for the Advance Light Source (ALS), will replace
existing conventional dipole magnets with a high field superconducting magnet that will fit directly over
the existing beam structure. The width of this short dipole ( 12 cm pole length along the beam ) is in the
process of being optimized with values currently considered between 18 and 24 cm. Whereas a wide (24
cm pole or more) structure has an inherent low field harmonic content, a reduced pole width with an 18
cm pole that operates at the same 5 Tesla field point will suffer from a field with reduced quality. Such
a reduction in field quality may however be well justified in terms of cost saving on a smaller structure
as long as the increase in harmonic content is manageable by the existing correction scheme of the ALS.

The Superconducting High Field Magnet Group has developed a format for harmonic representation
which is especially useful in short highly 3D magnets™. The above procedure was used in conjunction
with the Superband magnet design where field points calculated by the program TOSCA (18 cm
transverse case) are used in calculating various A’s values ( summary and results included in the
Appendix ). In this note we shall develop the field expansion as a function of x in terms of the local
A’s functions and compare such results with a similar expansion that follows an integration along the
magnet z axis.

Local lens approximation

In beam dynamics simulations the Superbend magnet is treated as a thin lens approximation where
the field and coefficients correspond to a Taylor expansion series along the magnet midplane x, at z=0.
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The above expression does not corrcspond to the integrated field (in z) and therefore care should be
taken in the interpretation of such coefficients. In a short magnet such coefficients are NOT what are
commonly called the normal multipole —e.g. quadrupole , sextupole etc, but rather a combination of
both normal and pseudo multipole harmonics. That can easily be seen by examining the expression for
By at y=0 derived from the 3D analysis :
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where A, are functions of z and A, primes denote differentiation with respect to z. The coefficient

associated with such a polynomial expansion ( Eq.1 and Eq.2 ) are therefore equivalent :
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Equation 2 may also be normalized ( spccnﬁcally at z=0 ) :
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In a true thin lens approximation the above expressions will have to be integrated in z and averaged
over a “magnetic length” corresponding to a “hard edge” magnet approximation. In applying the

integration to Eq. 3 we may note that all pseudo harmonics integrate to zero, that is:
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and Eq. 3 assumes the form :

+oc0 +co
/By({],[),z)dz = — / Ardz
—c0 —00
aB,(0,0 K2
/—Mdz — _9 f Aqdz
dz
—00 —oo
+o0 +o00
1 [8%By(0,2)
—00 —00o
o feo ©)
1 [ 83By(0,0,z)
EdeZ——4/A4dZ
—C0 —00
1 9B, (0,0, 2) b
=, 122 e, d
o 5334 dz 5 / A5 Z
1 95B,(0,0,2) Vi
y(U, Y, 2 -
120 / 505 dz = G/Aﬁdz
e —00

If we now define a “magnetic length” :
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Figure 1 B, computed with TOSCA as a function of x at z=0 with first and second derivatives.

We have shown that any order differentiation on the axis of By with respect to x can be calculated
directly or can be evaluated as a combination of normal and pseudo multipole coefficients. Such values
may or may not differ from a similar differentiation performed after all harmonics have been integrated
in z. We demonstrate such results using the 18 cm wide Superbend magnet and computations performed
by the program TOSCA. We have calculated By at several x locations ( y=0, z=0 ) and performed a
numerical differentiation with respect to x. We have also calculated Bx, By and B, on a grid and have
used the program FIGEND to reduce such values into 3D harmonics. Results are compared in the
following tables. From Fig.1 the following local values have been computed (18 cm pole) :
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n= -0.17 G/cm™4 0.00062 -0.042 -3.026 le-7 0.0013
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Table 2 Values of coefficients computed several different ways.

It is interesting to note that the values in column I calculated directly from derivatives of By(x,0,0)
with respect to x, are very close to the one in column III, computed after integrating By in z. There is
no apparent reason why that should be so ( Jackson Laslett where are you? ).



Appendix A 3D harmonic coefficients

The field components inside the curl free region of a magnet can be expressed as :
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are general functions of r and z that include the appropriate “normal” and “skew” terms
An(2) and Agp(z2).

In order that the series for the potential V,, satisfy the differential equation we introduce the functions
A,(z) and express the coefficients g, , ggn »g.n as general functions of r and z as shown below :
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For the expressions of the skew terms just replace grn , gon ,9zn With Jrn , Jon ,Gon and Ay(z)
with Ay(z)

4(n+1)
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Figure 2 Normal and pseudo multipoles

Z (cm)

Z (cm)



Figure 3 A comparison between local and integrated sextupole ( W =
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